

Institutional Schlieren:

A Production-Level Wind Tunnel Test Measurement

01/08/2015

Ted Garbeff NASA Ames AOI Theodore.J.Garbeff@nasa.gov

James T. Heineck
NASA Ames AOX
James.T.Heineck@nasa.gov

T. Kevin McDevitt NASA Ames AOI Kevin.McDevitt@nasa.gov

Laura Kushner
Aerospace Computing Inc.
Laura.K.Kushner@nasa.gov

Outline

 Use of schlieren/shadowgraph at NASA Ames Unitary Plan Wind Tunnel (UPWT).

Institutional schlieren/shadowgraph data systems modernization project.

- Hardware selection.
- Software methodology.
- Overview of completed data systems.
 - High-level system components.
 - Image acquisition and processing.
 - Current system capabilities.
- Future target capabilities/improvements.

Overview of Schlieren/Shadowgraph

- Technique often deployed as a test dependent facility measurement.
- Technique used to observe phenomena that are not visible to the unaided eye. Allows observation of aerodynamic flow features:
 - Model shockwave formation and interaction.
 - Flow separation.
 - Mach wave radiation.
- Caused by density gradients created by flow phenomena.
 Technique exploits index of refraction changes in test section.
- Optical technique,
 - Point light source collimated on one side of test section using large concave mirror.
 - Collimated light passed through test section.
 - Light collected by a large concave mirror and imaged onto camera on other side of test section.

Ames Discovery Innovations Solutions

NASA Ames Unitary Plan Wind Tunnel Schlieren/ Shadowgraph

Ames Discovery of Innovations of Solutions

Motivation

- Historically Ames Unitary Plan Wind Tunnel (UPWT)
 provided customers optical data services on a per
 test basis.
- These optical data services typically consist of Schlieren, Shadowgraph, infrared thermography, and pressure sensitive paint (PSP).
- Hardware/personnel furnished by Experimental Aero-Physics branch.

"Institutionalize optical data services" projects focusing on Schlieren, Shadowgraph, IR thermography, and pressure sensitive paint with the goals of:

- Purchasing state of the art, dedicated facility instruments.
- Improving data productivity by developing new data systems controls tools.
- Improving data product quality.
- Reducing data product delivery times.

Objective: Institutionalize/modernize UPWT Schlieren/Shadowgraph systems with an emphasis on test productivity and data quality.

- Purchasing/deploy dedicated hardware in both 11-by-11 and 9-by-7 foot test areas.
 - State of the art cameras and acquisition/control equipment.
 - Light sources, optics, mounts, remote controls.
 - Develop improved software architecture.
 - Reduce labor intensive aspect of optical services.
 - Improve near-time delivery of data products to customers.

Requirements:

- Minimize impact to test productivity.
 - Automate data collection process.
 - Improve camera throughput.
- Capture unsteady flow field phenomena when needed.
 - Camera used must be capable of high frame rates, but of sufficient resolution.
- Improve delivery rate of data products.
 - Camera used must have fast download rates.
- Develop a group of standardized data products.
 - Pixel averaged image.
 - Low-speed video.
 - High-speed video.

Hardware Down Select Criteria

Selecting a Camera

- Frame rate versus resolution
- Sensitivity
- Stability/Reliability
- Data transfer
- Workflow
- Auxiliary outputs

Selecting a Light Source

- Power output
- Stability/Reliability
- Point size
- Configurability

Selecting Image Acquisition/Processing

- Reliability
- Ease of use
- Redundancy
- Expandability

Testing in Production Wind Tunnel Environment

Ames Discovery Innovations Solutions

Dual-Color Shadowgraph

 A dual-color shadowgraph configuration was used to evaluate multiple makes and models of cameras in the wind tunnel during production testing.

Cameras and Light Sources

- Evaluated several high-speed camera manufacturers in facility.
- The Vision Research Phantom v2010 best fit unique needs of Ames UPWT.
- Selected new high-powered pulsed LED light sources.

Phantom v2010

- 22,500 FPS at 1280x800 pixels.
- ISO 64,000.
- 10 Gigabit Ethernet (~350 MB/sec)
- HD-SDI Auxiliary Output

ISSI LMS-520/LMS-620

- High-powered (2-3W) pulsed LED.
- Operated continuous or pulsed.
- Green and red wavelengths.

Image Acquisition and Processing

• A single server-class, rack-mount PC for both image acquisition and processing.

Server-class SuperMicro

- Dual six-core 2.4 GHz Xeon processors
- 24 GB RAM
- 64-bit Windows 7
- LabVIEW Developers Suite 2013 SP1
- LabVIEW Vision Development Module
- 4TB Raid 1

Intel AT2 10 Gigabit Server Adapter

MatrixVision HD-SDI Framegrabber

High-Level Data System Schematic

Two complete data systems deployed in both 11-by-11 foot and 9-by-7 foot test areas.

UPWT Data Systems Architecture

- Data systems coordinator (DSC) interfaces any number of "test dependent" data services.
- Network published "shared variables" and remote procedure calls allows information flow to and from schlieren/shadowgraph data system.

Image Acquisition and Processing Architecture

- LabVIEW based data system developed inhouse.
- Automated, synchronized data acquisition and image processing.
- Parallel processing and acquisition results in real-time data products.
- Distributed video for real-time decision making.

Live Video Distribution HD-SDI Video Update Loop Acquisition/Distribution of HD-SDI Low-Speed Video Image Resampling Facility Conditions Overlay Live Video Distribution Save Raw Image Data **Image Post Processing** Render Data Products Render HD-SDI Video Data Products Render High-Speed Video Data Products Update Processing Status High-Speed Video Update Loop Acquisition of High-Speed Video Trigger Recording in Empty RAM Partition. Initiate Download From Acquired RAM Partition. Save Raw Image Data

Data System Graphical User Interface

In-house developed camera acquisition/processing software utility.

Live Distributed Video Feed

- Permanent overlay displays test conditions as communicated from the facility.
- Non-destructive overlay indicates acquisition system health and status.

Overview of Data Products

Data Products/Data Point =

- Low-Speed Video (HD-SDI),
 1080p acquired up to 30 FPS
- High-Speed Video (Digital),
 550 frames @ 26010 FPS
- Stills
- Averaged Still (pixel average of all stills)

All processed automatically and in parallel with acquisition.

Future Capabilities

Dual Schlieren/Shadowgraph

 Augment dual imaging concept with addition of high-resolution, widefield camera.

Remote Optomechanics

Ability to traverse in three axes and rotate in two.

Remote control of camera/lens system position to simplify setup, enable remote

panning.

Advanced Processing

GPU accelerated processing to work large data sets and perform dynamic analysis.

Advanced Optics

 Correct astigmatism and explore stereoscopic techniques.

High-Speed

Optical Test Section of the Future

Improved viewing for Schlieren/Shadowgraph

- New larger windows to replace the 3 center rows allow for unobstructed Schlieren viewing.
- Removal of two wall slots between rows may affect tunnel calibration and test section airflow:
 - Flow measurements are being taken to quantify the effects.
 - Options for eliminating flow effects are being developed (i.e. interchangeable window section).

Resulting improved imaging from larger window

New Larger Window Concept

Conclusions

Advanced, institutional, production-level schlieren/shadowgraph systems at Ames UPWT 11-by-11 and 9-by-7 foot test sections.

- Hardware down-select:
 - High-speed digital cameras.
 - High-powered LED light sources.
 - Server-class computing for acquisition and processing.
- New software:
 - LabVIEW based acquisition and processing.
 - Data system synchronized to facility through data systems coordinator.
 - Processing done in parallel with acquisition.
 - Data products standardized and available real-time.
- New capabilities:
 - High frame-rates allow for off-body spectral analysis of flow field for correlation with on-body acoustic measurements.
- Future capabilities:
 - Leverage dual imaging and electro-mechanical actuation.
 - Advanced processing and optics.

Questions?

